Controlling things in my RV with the ControlEverything boards

Boards mounted behind panel

As described in my previous posts, I now have a pair of 8 relay boards from ControlEverything.com controlled by Alexa, an iOS app, and other Patriot devices. So now its time to get to work and actually install the boards and wire them up to the first control panel.

 

The front control panel in my RV contains the most switches, so I’m going to start there.

The top part contains switches for the vent (open, close, fan) and 5 other lighting switches. So I’m going to need 8 relays.

RV control panel top part

  1. Vent fan
  2. Vent Open
  3. Vent close
  4. High counter lights
  5. Low counter lights
  6. Sink handing lamps
  7. Kitchen ceiling lights
  8. Left side trim lights

RV front control panel

The lower section has a bunch of controls and indicators on it, but I’ll only be automating 7 of the switches:

  1. Ceiling lights
  2. Door side outside floods
  3. Opposite door side outside floods
  4. Front porch floods
  5. Front awning LEDs
  6. Front awning extend and retract

So I pulled each panel to see if there is room behind it for the 3″ x 7″ x 1″ boards. Unfortunately there is a water pipe hidden in the midst of all those wires that prevents pushing them back out of the way.

Front panel removedSo my next step was to pull the entire panel as shown. This requires removing 8 screw covers and screws, and then loosing or removing some of the individual control panel screws because they went all the way through to the wood behind the panel.

This is where having a very supportive wife helps, because it looks pretty scary at this point.

Once removed, I could see that there was a ton of room in the bottom section, and sufficient room in the top section. After positioning the boards various ways in those sections, I realized that the bottom section would easily work, but the wire runs would be pretty long. So I considered  using the top section, then realized that the boards would fit at the top of the 2nd section, simplifying routing of the wires.

Boards mounted behind panelSo here you can see the boards mounted inside the wall behind the panel. The sides angle inward, so I was able to run a few screws through the holes in the corners of the boards to fasten them. Just by luck, the width of the opening is enough that I can get to the wire screw connectors on the boards.

So once the boards were mounted and 12v power applied, I could test the Alexa interface.

So next I just needed to connect the relays to the 15 switches. The screw terminals are easily accessible, so it’s a matter of just connecting the piggyback terminals and hooking up the 15 wire pairs.

So for each switch:

  1. Attach a pair of wires to the normally open (NO) relay terminals
  2. Attach a piggyback connector to each wire
  3. Remove the connector from the switch
  4. Attach the wire that was going to the switch to the piggyback connector that has the relay’s wire connected to it.
  5. Attach the piggyback connector to the switch.

The result is that the relay is connected in parallel to the light switch, and no wires have been cut.

So after attaching the first relay, I did a quick test with Alexa, and nothing happened. What? I could see the LEDs coming on, I could hear the relay flipping, but the light wasn’t coming on. So after about an hour of measuring the relay terminals, trying other relays, scouring the forums, whining and moping around, I finally figured out that the relays are mislabeled on the Photon 8-Relay board. Relay 1 is actually labeled relay 8. They’re backwards right-to-left instead or left-to-right. So I moved the wires from relay 1 to relay 8, and its working now.

Armed with this new information, I completed hooking up the other 14 relays, and now I can control most of the lights in the main room, the powered vent, about half of the outside lights, and the front awning and its LED strip lights.

Now I’m ready to order a couple more ControlEverything boards so I can tackle the smaller, rear control panel.

Automation Using the Control Everything Relay Board

ControlEverything.com boards

As I mentioned in the previous post, I’m going to give the ControlEverything.com boards a try. I’ve received the 8 relay Photon board, an 8 relay I2C expansion board, and the cable to interconnect them.

So to start off, I plugged a Photon into the 8 Relay Photon board, connected 12v to the board, and worked through their getting started tutorial.

I flashed the Photon with the example I2C scan code, and it immediately detected the I2C port at address 32.

Next I tried out the example from their NCD8Relay library on GitHub. This worked great. It toggles the relays in various ways. You can hear the relays toggling, in addition to seeing the status LED of each turn on and off.

So next I needed to figure out how to integrate this board with Patriot. Currently Patriot assumes a dedicated pin to control each device. Since the ControlEverything.com boards use I2C, I’d need to make some changes.

So next I created a new Patriot plugin library named NCD8Relay. This plugin should work with any of the NCD relay boards. There are two different I2C chips used on the boards, so addressing needs to take that into account. Since I don’t have any of the other sized relay boards, only the 8 relay photon and I2C expansion boards are tested at this point.

So having extended Patriot with the NCD8Relay plugin, I verified operation of the boards using both the iOS app and Alexa smart home skill. This all looks pretty good, so the next step will be to mount the boards behind the lighting control panel and wiring them up. That’s coming up in the next post.

RV Lighting Alexa Control

One of the lessons I learned from automating the lighting of my last RV is that I need to have a plan for what to do when it comes time to sell it. I didn’t have a plan, because I thought we were going to live in it until I died. Then it would be someone else’s problem. But now I know that I might have to replace the RV every ten years or so, so I’m going to be a bit smarter about it this time.

For the lighting for this RV, I am going to install my gadgets in a manner that doesn’t interfere with the operation of the existing switches. That way I can choose to simply disable the IoT automation, and everything will continue to work as it did the day I bought the RV. Also, I want to make it easy to remove the automation controllers without having the splice or repair any wiring going to the switches or lights.

Sainsmart Relay boards

To allow the switches to continue to work without automation, I’m going use relays connected in parallel with the switches. When using automation, the switches will be left off and the automated relays will open and close the circuit. When the relays are off or have been removed, the switches will continue to work as before. Since most of the lights are located in one of two control panels, that means I can probably handle most the lights with a pair of Photon controllers, each with a Sainsmart 16 relay board.

Piggyback Terminals
Piggyback Blade Terminals

To allow connection without modifying the wiring, I’m going to use piggyback blade connectors.

And of course, the Photon will be running the Patriot library to allow both iOS and Alexa voice control. Time to warm up the soldering iron.

Author update:

Upon connecting the Sainsmart 16-relay board to the Photon output pins (5v tolerant) I discovered that the relays are always energized. The 3.3v HIGH signal is  insufficient to turn off the relay. I could add level converters, MOSFETs, etc. to get this to work, but I don’t want all that extra circuitry flopping around when the RV is bouncing down the road. So I’m going to take a different tack.

Control Everything

In looking for Photon (3.3v) compatible relay boards, I came across some relay boards made by  ControlEverything.com. These contain various numbers of mechanical or solid state relays. They have a built-in regulator to allow 12v input to the board. And best of all the the Photon plugs directly onto the board. This will eliminate a bunch of wiring.

Even better, multiple boards can be daisy chained via I2C. So for example, I can start with an 8 relay board, then add an additional 8 relay I2C board without the need for another Photon. Surprisingly, the two 8 relay boards (with and without Photon) are a bit cheaper than a 16 relay board.

I’ve received the boards, and am starting to experiment with them. Things look very good so far, but I’ll need to modify the Patriot plugins to handle talking with the relays via I2C instead of direct pin mappings. I’ll be blogging about that in the next post.

P.S. Sainsmart has be great to work with, and I would definitely work with them in the future. This combination of parts just didn’t work out for this project. And no, they didn’t pay me to say that 🙂

Converting the RV Garage to an Office

One of the reasons why we chose a toy hauler for our new RV is the “garage” provides an additional room that can be fixed up to serve as a home office. We did that with our previous RV, and it worked out quite nicely. I think we’re going to be even more pleased with the one in our new RV.

Installing carpet
Carpeting the garage

So the first thing we needed to do to make the garage more livable was to install carpet. My wife Shelley had found a good deal on a used rug that was 9′ x 14′, so we trimmed it back to custom fit the 8′ x 13′ garage floor.

Carpeted Garage
Finished garage carpet

We had additional trimming to do around the corner bathroom and side door, but it worked out great!The 13′ garage is a bit larger on the 10′ garage on the last RV, and there is a small bathroom. So in addition to allowing us haul our motorcycle along with us, in can double as both an office and a guest bedroom.

It sports motorized queen size bunk beds that can be raised entirely up to the ceiling to make room for hauling multiple motorcycles, or lowered individually or together for sleeping. The bottom bed folds back to form a pair of benches, with a removable table between.

Picnic with Mom

On our last trip we took my mother-in-law with us up to Kansas for my son’s wedding. We made half the lower bunk into a bed for her, and left the other bench setup to use with the table for eating lunch, etc.

Another change that was needed was to provide power to the table that I’m using as a desk.

 

With an iMac, charging cords, and Amazon Echo, at at times a soldering station, I need several power outlets. I initially just ran extension cords, but quickly got tangled up in them. So I searched around and found some circular outlet boxes that provide both 120 vac outlets and USB ports. These mount through a hole I drilled into the table surface, and mount fairly flush.

Outlet in table

This allows using the table to eat, play games, etc. when not using the table as a computer desk. And of course the office balcone is awesome, especially when I can hang it over the edge of a lake.

Ron sitting in office by a lake
My office by the lake

A New RV Means New IoT Opportunities

The RV park where we stay most of the time will be enforcing a 10-year policy. This means that in order to stay here, my RV has to be 10 years old or newer. Unfortunately, the RV that I’ve been automating for the past few years is 10 years old. So the options are move, or replace it. Since we really like staying at this park, we’re choosing to upgrade the RV.

We looked at replacing it with another used RV. When I did the math though, it actually came out reasonable to purchase a new one that we can keep for 10 years as opposed to buying a used 5-year old unit then replacing it again in 5 year.

So after much shopping, searching, praying, and looking, we finally decided on a new Heartland Cyclone 4005. This is a huge 45′ toy hauler with most of the amenities included. Shopping around locally, it was a bit out of our budget. But searching nationwide for it, I found that it could be had for about $15,000 less if I drive north a couple states to pick it up.

Ron with new RV
Picking up the RV in Troy, Ohio.

So we ended up working with the Dave Arbogast RV dealership in Troy, Ohio to purchase it. Their price was as low as we could find, and the folks we easy to work with. We could have had the RV delivered to Texas for about $2,500, but we opted to drive up there and pick it up ourselves.

En route to picking it up, we swung a little bit out of the way to go by the Heartland factory in Elkhart, Indiana to take the tour of their toy hauler plant.

RV tour
Dustin giving us the tour of the Heartland Cyclone plant.

Serendipitously, the models being built were the exact same Cyclone 4005 model that we had purchased. Some were a different color with different options selected, but it was like watching our unit being built in various stages of completion. They must have about 12 units in the assembly line at one time working their way toward completion. This was a terrific tour and we enjoyed it very much. Dustin is the manager that gave us the tour, and he was great about explaining how and why they build them the way that they do. For not being a marketing guy, he sure made us feel very good about having chosen a Heartland RV, and the unit that we had picked. I took of course a thousand pictures, so I now have a pretty good idea of what’s behind the various walls, floor, and ceiling for when I go to customize or repair it in the future.

Since the Cyclone 4005 is a high end toy hauler, there really weren’t many options to choose from. The options that we got to choose were:

  • Upholstery color: we chose the dark brown over the medium brown color.
  • Optional ramp patio package and 3-season wall for the rear ramp. This allows the ramp to be folded down to become an outside deck. Since I’ll convert the garage into my office when not hauling a motorcycle, I think of this as my office balcony.
  • Full size residential refrigerator (with battery sine converters for staying cool on the road). Since we live full time in our RV, we need a full refrigerator, not the compact units typically found in RVs.
Control panel
One of two main control panels.

In addition, we had them add slide toppers. It was surprising that these were not included standard. Here in Texas, every bit of shade helps, and the roof of the slides is pretty thin and let a lot of heat in otherwise. Unfortunately, when we picked up the unit the slide toppers weren’t installed. So the the good folks at Arbogast RV worked with us and the Heartland factory to arrange to have the toppers shipped to us, and reimburse us when we get them installed.

So now I’m planning out how to automate this beast. I’m super delighted that there are a lot of LED lights in this RV, and most of the lighting controls are contained in 2 large control panels. This should make adding Photon controlled relays much easier and less expensive.

I’ll be blogging my IoT and other projects as I go. Stay tuned…

 

Alexa Smart Home Skill

I’ve now replaced my previously created Alexa Custom Skill with an Alexa Smart Home Skill. I’ve been holding off doing this because of the difficulty of setting up an OAuth2 server. Recently I came across an article describing how to use Login With Amazon to do this though, and I have gotten that working now.

So now I don’t have to say the name of the custom skill when invoking Alexa. Using the custom skill, I would have to say something like “Alexa, tell My RV to turn on the computer”. Sheesh. Quite a mouthful. And easy to get wrong. But using an Alexa Smart Home skill, I now only need to say something like “Alexa, computer on”. This seems like a small change, but it has made a big difference.

I’m working on providing some instructions, and then I’ll post all this code to Github.

Update: I’ve now converted the skill from using the Login with Amazon to using the particle.io oauth directly, and I’ve published the skill. What this means is that it can now be used by anyone, and it will prompt you during installation of the skill to provide your Particle.io login to access your devices. Refer to my other posts and Hackster.io project for more details. I had initially call this ParticleIoT, but that was hard to say and spell so I renamed it Patriot which uses many of the same letters.

Using Old iPhones for IoT Control Panels

I’ve been thinking for awhile now about using my old iPhones in my IoT projects. They have touch displays, wifi, cameras, audio, accelerometers, and maybe GPS depending on how old they are. Plus they have almost no value once they get a few years old. The only real downside to using them is the fact that they’re a bit hard to program, but hey, that’s what I do for a living.

So this past weekend, I scrummaged through my old Apple parts boxes, and came up with (2) iPhone G, an iPhone GS, iPhone 4s, and iPhone 5.
Doing some research, I decided that the iPhone G is not really worth messing with for a couple reasons:

  1. The newest iOS support available is SDK4, so writing code to run on it would be difficult, and could not support the advanced features released over the past five years or so.
  2. The iPhone G does not have a rear facing camera. One of the features I want to eventually support is using the camera for a room monitor. But since the phone will be mounted to a wall, the normal front facing camera will be pointed into the wall.

That said, the support for iPhone 3GS is not bad, but it is limited.

  1. iOS 6 is supported
  2. Xcode 7.3.1 is supported, currently the latest Xcode.
  3. Swift is NOT supported. Swift requires iOS 7.

    Image of iPhone 3GS
    Using an iPhone 3GS for simple control panel

So just for fun, I created a version of the control panel in Objective-C for iOS 6 to run on the iPhone 3GS. This app simply displays images in a collection view, and calls the Particle.io API when one is pressed. I probably won’t add much more to this app, but instead develop a Swift version for use on the newer phones. I’ll add new features to that version, and leave the Objective-C version for just simple control operations.

Update: I’ve now posted a cleaned-up version of the app code to Github, and and article on Hackster.io.

New Photon Based IoT PCBs

New IoTv2 PCBs

I’ve updated the printed circuit boards for my IoT projects. These boards are 5×5 cm and intended to be used in a variety of IoT applications. They include the following features:

  • Switch from linear voltage regulator to buck regulator.
    • The linear regulators used on my previous boards were getting quite warm as a result of converting the RVs +12 volts to +5 or +3.3v. I found some inexpensive variable voltage bucking regulators for about $1 each. These are marked “D-Sun”, readily available on Amazon.com, and they work well.
  • Provide direct pin-outs to LED driver boards.IoTv2 PCB with LED drivers
    • I’ve provided 4 sets of PWM pins that can interface directly with the Sparkfun 12959 MOSFET LED driver boards. I’ve positioned the pins such that standard header pins can be used to attach the boards instead of wires. I’ve gone back and forth about integrating the functionality directly, and finally concluded that the space used by the MOSFET and screw terminals was better pushed off onto small extension boards. Up to four of these can then be optionally added as needed. Sparkfun sells these for $4 each, so it’s sort of a no brainer. Putting them onboard would force me to moving to a larger 10×5 cm board, and only save a couple bucks.
  • Both 3.3v and 5v supplied
    • I’m using a 5v regulator to provide power to the Photon. It then has a 3.3v regulator for itself, and can provide 3.3v @ 100 mA to other sensors, etc. Since most of the Photons pins are 5v tolerant, this enables using both 3.3v and 5v sensors.
  • Provide groups of pins for ease of connecting other devices
    • To simplify adding additional sensors such as DHT11 temperature sensors, I’ve provided groups of pads that provide a GPIO, power, and ground. Some are 5v, and some are 3.3v. I was careful to ensure that the GPIOs provided with the 5v power groups are in fact 5v tolerant. These are great for things like PIR motion sensors, various switches, and so forth.

So after checking that the first batch of 10 boards work as intended, I’ve ordered another 10 and am in the process of replacing most of my existing controllers with these. While the Photon costs substantially more than the previous Arduino Pro Mini and RF24 radios, the ease of programming over the air combined with their robust design (5v tolerant pins, super stable operation) and included Particle.io support make these worth it!

I’m currently using my Echo and Dot to control these, but recently got AVS running on my Raspberry Pi and may throw that into the mix also.

If anyone is interested in using these boards in your own projects, post your request in the comments and I’ll provide links to the Eagle files so you can have boards made yourself. If you don’t mind waiting about 6 weeks, you can order these from itead.cc for $13 total for 10 boards. If you’re in a hurry, DHL shipping increases the total cost to about $26 total for 10 boards that arrive in less than 2 weeks. I ship with DHL for the first batch, then use the cheaper shipping to get more while I work with the first batch.

Note: I’ve now posted the Eagle files on Github.

MyRvApp

MyRvApp is an iPhone app that I’ve been working on to control my Arduino-equipped RV. The concept is pretty simple:

  • Display the floor plan of the RV
  • Controllable lights have circles overlaid to show their location
  • Tapping on a circle turns the light on or off
  • The color or alpha of the circle changes to reflect on/off state

Lights are controlled by Arduinos. These in turn communicate with each other over a simple RF24 radio network. One of the Arduinos is also connected to WiFi and Particle.io and serves as a bridge for all of the Arduinos.

Initially, lights will be hardcoded into the app. Going forward though, I’ll want the Arduinos to self publish information about their location and capabilities. This differs from HomeKit in that units are configured within each’s Arduino code. I’m doing this because I want to distribute the intelligence of the system across all of the units, instead of locating it all within a single point of control. I believe that this will result in a more robust, and eventually more intelligent system.

I’ll be creating a Github repo for this code and will be posting links here.

How to connect Echo’s Alexa to an Arduino

Introduction

As mentioned in my last post, I have connected my Echo to interface with my Arduino controlled RV lights. And thanks to the Particle.io Photon, this was quite easy. Perhaps the toughest part about this process has been getting past all the unfamiliar language used by Amazon, such as “Lambda functions”, “Skills”, and so forth. The actual implementation was fairly quick and easy, as I’ll explain in this post and the accompanying GitHub project.

Who is Alexa, and what is an Echo?

In a nutshell, the Amazon Echo is a small electronic device that you can interact with using spoken natural language. It has directional listening capability that allows it to hear you talk even in a noisy environment; for example when you’re playing the TV or stereo. It responds to you after you speak the work “Alexa”.

Requirements for connecting Alexa to your Arduino

You don’t have to own an Amazon Echo to get started. You can design and build a voice controlled interface, and test it using the Alexa Skills Kit (ASK) Service Simulator. The simulator allows you to type in what you would speak, and responds exactly as the Echo device would.

You’ll need to join the Amazon developer program, and setup an Amazon account to handle the backend. Both of these things can be done for free.

I’ve posted all the details on Github. I’ll warn you though; the instructions appear quite long. But don’t be deterred. None of the steps are particularly difficult, and the results are amazing!

I’ve been sharing tips and ideas with my buddy Don. He’s setup his Echo to control his pipe organ clocks. You can check out his work on facebook or at donholmberg.com. There’s also a blog article on Mutual Mobile’s website talking about some of our Arduino projects before connecting them to the Amazon Echo.

I’m having a blast working with all this new technology, and its fun to be able to use it to enhance my RV lifestyle!